Marcadores

quinta-feira, junho 30, 2016

HISTORIA EVOLUTIVA DA VIDA-CIENCIAS-BIOLOGIA

1

História evolutiva da vida

história evolutiva da vida na Terra traça os processos pelos quais organismo vivos e fósseis evoluíram. Engloba a origem da vida na Terra, que se pensa ter ocorrido há 3,5 bilhões de anos, até aos dias de hoje. As semelhanças entre todos os organismos atuais indicam a presença de um ancestral comum a partir do qual todas as espécies divergiram por um processo de evolução.
2
Biofilmes de bactérias e archaea coexistentes foram a forma de vida dominante no início do Arqueano e pensa-se que muitos dos principais passos nos primórdios da evolução tiveram lugar dentro deles.  A evolução de fotossíntesecom oxigênio, há cerca de 3,5 bilhões de anos, eventualmente levou àoxigenação da atmosfera, começando por volta dos 2,4 bilhões de anos atrás. Enquanto que células eucariotas podem ter estado presentes anteriormente, a sua evolução foi acelerada quando começaram a usar o oxigénio no seumetabolismo. A evidência mais antiga de eucariotas complexos com organelos, data de há 1,85 bilhões de anos. Mais tarde, por volta dos 1,7 bilhões de anos atrás, começaram a aparecer organismos multicelulares, com células diferenciadas a realizar funções especializadas.
3
As primeiras plantas terrestres datam de cerca de 450 milhões de anos atrás, apesar de evidências sugerirem que algas formaram-se em terra tão cedo com há 1,2 bilhões de anos. Plantas terrestres foram tão bem sucedidas que se pensa que elas contribuíram para a extinção do Devoniano. Os animais invertebradosapareceram durante o Ediacarano,  enquanto que os vertebrados surgiram cerca de 525 Milhões de anos atrás durante a explosão do Cambriano.
4
Durante o Permianosinápsidos, incluindo os ancestrais de mamíferos, dominaram a terra,  mas a extinção do Permiano-Triássico há 251 milhões de anos esteve perto de dizimar toda a vida complexa.  Durante a recuperação desta catástrofe, Archosauria tornaram-se os vertebrados terrestres mais abundantes, substituindo os therapsida em meados do Triássico  Um grupo de archosauria, os dinossauros, dominaram o Jurássico e Cretácico,  enquanto os ancestrais dos mamíferos sobreviviam como pequenos insectívoros.  Depois daextinção Cretáceo-Paleogeno há 65 milhões de anos ter morto os dinossauros não-avianos  os mamíferos aumentaram rapidamente em tamanho e diversidade. Tal extinção em massa pode ter acelerado a evolução ao fornecer oportunidades para novos grupos de organismos de diversificar. 
5
Evidências fósseis indicam que as plantas com flor apareceram e rapidamente diversificaram no princípio do Cretácico, entre 130 e 90 milhões de anos atrás, provavelmente pela coevolução com insectos polinizadores. Plantas com flores efitoplâncton marinho são ainda os produtores de matéria orgânica dominantes.Insectos sociais apareceram por volta da mesma altura que as plantas com flor. Apesar de ocuparem apenas uma pequena parte da "árvore da vida" dos insectos, agora formam cerca de metade da massa total dos insetos. Os humanos evoluíram a partir de uma linhagem com diferentes espécies de hominóideos cujos fósseis mais antigos datam de há mais de 6 milhões de anos. Apesar dos membros mais antigos desta linhagem terem cérebros do tamanho semelhante ao de umchimpanzé, há sinais de um aumento constante do tamanho do cérebro após 3 milhões de anos atrás.
_ciencias_27cie.zoom
Os mais antigos fragmentos de meteorito encontrados na Terra têm cerca de 4,54 bilhões de anos de idade; isto, junto principalmente com a datação de depósitos de chumbo antigos, colocou a estimada idade da Terra por volta deste tempo. Lua tem a mesma composição da crosta terrestre mas não contém um núcleo planetário rico em ferro como o da Terra. Muitos cientistas pensam que cerca de apenas 40 milhões de anos depois um planetóide atingiu a Terra, lançando para o espaço material da crosta que acabou por formar a Lua. Uma outra hipótese é que a Terra e a Lua começaram a coalescer ao mesmo tempo, mas a Terra, tendo uma gravidade muito mais forte, atraiu quase todas as partículas de ferro na área. 1
Até recentemente, as rochas mais antigas encontradas na Terra foram estimadas possuirem cerca de 3,8 bilhões de anos de idade,  levando cientistas a acreditar durante décadas que a superfície da Terra estava fundida até essa altura. De acordo com isto, nomearam esta parte da história da Terra de éon Hadeano, significando "infernal"  No entanto, análises de zircons formados entre 4,0 a 4,4 bilhões de anos indicam que a crosta solidificou cerca de 100 milhões de anos depois da formação do planeta e que o planeta rapidamente adquiriu oceanos e uma atmosfera, que podem ter sido capazes de suportar vida. 
Evidências recolhidas da lua indicam que a partir de 4,0 a 3,8 bilhões de anos sofreu um Intenso bombardeio tardio por detritos que sobraram da formação do Sistema Solar, e a Terra deveria ter sofrido um bombardeamento ainda mais intenso devido à sua maior gravidade  Apesar de não haver evidência direta das condições na Terra há 4,0 - 3,8 bilhões de anos, não há razões para pensar que a Terra não foi afectada por este intenso bombardeamento tardio.  O evento poderá ter removido qualquer atmosfera e oceanos anteriores; neste caso gases e água resultantes de impactos decometa podem ter contribuído para a sua substituição, apesar de que a desgaseificação vulcânica na Terra teria contribuído pelo menos metade.23
6

Evidências mais antigas da vida na Terra 

Os organismos mais antigos que já foram identificados eram diminutos e com relativamente poucas características, e os seus fósseis parecem-se com pequenos bastonetes, que são difíceis de diferenciar de estruturas que surgem através de processos físicos abióticos. A evidência mais antiga indisputável da vida na Terra, interpretada como bactérias fossilizadas, data de há 3 mil milhões de anos.  Outras descobertas em rochas datadas em cerca de 2,5 mil milhões de anos têm sido também interpretadas como bactérias,  com evidências geoquímicas aparentemente mostrando a presença de vida há 3,8 mil mílhões de vida.  Contudo estas análises foram escrutinadas cuidadosamente, e foram encontrados processos não-biológicos que poderiam produzir todos estes "sinais de vida" que foram relatados.    Embora isto não prove que as estruturas encontradas tenham uma origem não-biológica, elas não podem ser tomadas como evidências claras para a presença de vida. Assinaturas geoquímicas de rochas depositadas há 3,4 mil milhões de anos foram interpretadas como evidências de vida,    embora estas afirmações não tenham sido examinadas pormenorizadamente por críticos.
7

Vida "semeada" de outro lugar 

A ideia de que a vida na Terra foi "semeada" de outras partes do universo data pelo menos do século quinto AEC.  No século vinte foi proposto pelo químico físico Svante Arrhenius,  pelos astrónomos Fred Hoyle e Chandra Wickramasinghe,  e pelo biólogo molecular Francis Crick e pelo químico Leslie Orgel.  Há três versões principais para a hipótese de "sementeira de outro local": vindo de outro lugar do nosso Sistema Solar via fragmentos lançados para o espaço por um impacto de um meteoro de grandes dimensões, sendo a única fonte credível Marte;  por visitantes extra-terrestres, possivelmente por contaminação acidental com microorganismos que trouxeram com eles;  e de fora do Sistema Solar mas por meios naturais.
8

Origem da vida


 
Os estudos científicos da origem da vida, ocasionalmente também denominados evolução química, constituem um ramo pluridisciplinar da ciência, que envolve, além da Química e da Biologia, conhecimentos de FísicaAstronomia e Geologia. Seu objeto de interesse são os processos que teriam permitido aos elementos químicos que compõem os organismos atingirem o grau de organização estrutural e funcional que caracteriza a matéria viva. O fato de que estes processos requerem condições determinadas, que só podem ocorrer em locais específicos do universo, conecta o estudo da origem da vida à Astrobiologia.
Os modelos propostos para a origem da vida são tentativas de recriar a história desta evolução e é importante destacar que não existe, na maioria das etapas deste processo, nenhum consenso entre os cientistas. É uma situação inteiramente distinta da evolução biológica onde o modelo evolucionista Darwiniano encontra-se bem estabelecido há mais de um século. Para melhor situar o problema é indispensável em primeiro lugar examinar os níveis de organização inerentes à matéria viva e então discutir como os modelos propostos para a origem da vida (ou biopoese) tentam resolvê-los.



A presença de água em estado líquido é um fator fundamental da vida em nosso planeta, e, até onde podemos conceber, um requisito essencial para a vida em qualquer ponto do universo.
9

Níveis de organização dos organismos vivos 

Materiais disponíveis (Elementos biogênicos) 

O primeiro requisito fundamental refere-se à disponibilidade dos elementos químicos essenciais à vida. De fato, o carbono, o hidrogênio, o oxigênio, o nitrogênio, o fósforo e o enxofre, denominados coletivamente "elementos biogênicos" (geradores de vida), estão entre os mais abundantes do universo. Pertencem igualmente ao grupo dos elementos mais leves da tabela periódica, e são ou formam facilmente compostos voláteis. Estão, por isso, sempre presentes em grande quantidade emplanetas ou satélites grandes e frios o suficiente para possuírem atmosferas, e tendem a se acumularem em suas camadas superficiais. Por outro lado, a natureza das reações bioquímicas conhecidas exige que as temperaturas reinantes permitam a existência de água em estado líquido. Estes limites são fundamentais aos conceitos de habitabilidade planetária e dezona habitável.
10

Distribuição dos elementos biogênicos no universo 


A situação da Terra no sistema solar é fundamental para que ela abrigue as condições ideais para a vida.
Embora ainda não se tenha evidências a respeito da composição das atmosferas dos planetas extra-solares, é altamente improvável que os elementos biogênicos não constituam a maior parte da sua massa. A grande diferença que pode ser esperada entre as composições atmosféricas dos vários planetas, é tal como no sistema solar, a que é decorrente da capacidade de retenção dos vários gases em função da temperatura e da força gravitacional. Assim, os planetas grandes e frios tendem a reter uma grande quantidade de hidrogênio, resultando em atmosferas redutoras (CH4, NH3, H2, H2O). Nos planetas (ou satélites) muito pequenos ou muito quentes, o envoltório gasoso é facilmente perdido. Apenas os planetas em que a temperatura moderada está aliada a um porte médio, há a possibilidade de formação de atmosferas oxidadas, devido à perda seletiva (ou escape) do hidrogênio. As atmosferas oxidadas podem ser neutras (N2, CO2, H2O) ou oxidantes (quando há um excesso de oxigênio: N2, CO2, O2, H2O). As composições prováveis das atmosferas planetárias variam basicamente, portanto, no que diz respeito a seu grau de oxidação. A discussão a respeito do grau de oxidação da atmosfera primitiva da Terra é um dos tópicos fundamentais aos modelos de origem da vida.
leafs on the floor,leafs defoliate from the trees


Combinação (Compostos orgânicos) 

Nos organismos vivos, os elementos biogênicos constituem moléculas de grande variedade estrutural onde se distinguem três classes principais; os lipídeos formados pela combinação de compostos muito reduzidos e insolúveis em água; osglicídeos e os protídeos, ambos de grau de redução intermediário, e tipicamente solúveis em água na sua forma monomérica (ou seja, quando as moléculas que os constituem, os monossacarídeos e os aminoácidos, estão desagrupadas). Já em sua forma agrupada, os polímeros, podem apresentar as características físico-químicas mais variadas.
12

Agregação dos materiais orgânicos  

As formas poliméricas dos glicídeos incluem tanto formações lineares quanto expansões laterais. Estes polímeros têm geralmente função estrutural (celulose) ou de acúmulo energético (amidoglicogênio). Já os polímeros derivados dos aminoácidos, os polipeptídeos, além de se prestarem a estas mesmas funções, têm papel essencial no funcionamento do metabolismo. Os polipeptídeos fabricados pelos organismos vivos são denominados proteínas. As proteínas envolvidas em funções metabólicas são denominadas enzimas. São basicamente constituídas de cadeias lineares de aminoácidos que organizam-se espacialmente formando hélices ou novelos determinados pela constituição individual dos aminoácidos componentes da cadeia. A conformação espacial de cada proteína é responsável por suas características físico-químicas.
13

Orientação espacial (Quiralidade) 


Alanina R e L
Para que a conformação espacial das proteínas seja constante é indispensável que os aminoácidos que a constituem tenham uma orientação espacial determinada. Todos os aminoácidos, com exceção da glicina, podem existir em duas formas geometricamente opostas denominadas enantiômeros. Esta propriedade constitui a chamada 'quiralidade' (do grego chiros -'mão'), pois as duas formas diferem uma da outra em termos de orientação espacial da mesma forma que a mão esquerda difere da mão direita. Os aminoácidos e açúcares preparados por métodos artificiais sem o uso de agentes quirais são sempre misturas de partes iguais dos dois enantiômeros. Nos seres vivos, ao contrário, o maquinário metabólico é totalmente específico, sintetizando e utilizando aminoácidos e açúcares pertencentes a uma mesma forma estrutural.

Organização funcional 

O surgimento da organização funcional dos organismos primitivos, ou seja, a forma como as moléculas se dispõem para constituir as primeiras entidades capazes de interagir com o meio ambiente é outro passo fundamental. O fato de que nos organismos atuais todas as funcionalidades presumem a existência de compartimentos individualizados, as células, demonstra que a conquista da celularidade foi certamente um fato decisivo na história primitiva dos sistemas vivos.
14

Transmissão da informação 

O outro requisito essencial da evolução primitiva da vida foi o desenvolvimento da possibilidade de transmitir a informação adquirida na interação com o meio ambiente, que requer a possibilidade de reprodução e também a possibilidade de criação e preservação da variabilidade entre os organismos. Estas características dependem das propriedades singulares dos ácidos nucléicos (RNA e DNA), moléculas que são capazes de conter informação e de se replicar, estando esta replicação sujeita a pequenos erros. O aumento da variabilidade traduz-se num grande número de modos de interação com o meio ambiente, dos quais os mais eficazes são preservados, por meio da seleção natural.
15

Evolução das ideias 

Hipótese heterotrófica (ou clássica) 

O marco inicial do questionamento científico moderno a respeito da origem da vida, pode ser posicionado nos experimentos de Louis Pasteur, demonstrando que a formação de organismos vivos a partir da matéria inanimada (geração espontânea), não poderia ser, ao contrário do que muitos supunham então, um fenômeno trivial.

Balão « pescoço de cisne » utilizado por Pasteur para demonstrar que a formação de organismos em preparados nutritivos era oriunda da contaminação por germes presentes no ar.
A partir daí, os cientistas voltaram-se para a idéia de que a indagação científica a respeito do surgimento da vida deveria ter como foco as condições muito especiais exigidas para este processo, que possivelmente teriam existido apenas nos primórdios da história do planeta Terra. Uma das primeiras abordagens do problema foi o questionamento acerca das características dos primeiros seres vivos. Para sobreviver num ambiente primordial seria necessário que estes organismos primitivos fossem capazes de sintetizar seus próprios nutrientes (isto é, seriam autotróficos), ou dispusessem de uma fonte externa de compostos orgânicos (neste caso seriam heterotróficos). A maior complexidade dos organismos autotróficos, que devem ser capazes tanto de produzir quanto de consumir seu alimento, sugeriu aos cientistas das primeiras décadas do século XX que a Terra primitiva teria sido um ambiente rico em compostos orgânicos (Hipótese heterotrófica). A descoberta da composição química das atmosferas dos planetas exteriores, contendo hidrogênio, metano e amônia, gases constituídos pelos mesmos elementos 16que os compostos orgânicos que integram os seres vivos, sugeriu a Oparin  , um dos primeiros pesquisadores a se dedicarem a esta questão, que também nosso planeta poderia ter tido uma atmosfera com composição semelhante. Não conteria, por conseguinte, oxigênio, que poderia causar a decomposição dos compostos orgânicos por oxidação. Mais tarde Haldane  aperfeiçoou o modelo sugerindo que, sob ação de relâmpagos ou da radiação ultravioleta estes compostos seriam formados na atmosfera e carregados pelas chuvas aos oceanos, que passariam a ter as características de uma "sopa quente e rala" (hot thin soup). Outra contribuição teórica importante foi a de John Desmond Bernal  , que levantou a questão da necessidade de concentração destes componentes e sugeriu como fatores importantes as superfícies de evaporação em lagoas costeiras e a capacidade de absorção de compostos minerais em contato com os oceanos primitivos. Elaborou também o conceito de biopoese, sistematizando em etapas progressivas o desenvolvimento da complexidade dos seres vivos. Estas formulações ganharam muita credibilidade depois que em 1953, Stanley Miller, trabalhando sob orientação de Harold C Urey, logrou obter, num histórico experimento4 , uma variedade de aminoácidos. A verdadeira importância deste experimento é, hoje, bastante contestada. Nem a composição atmosférica utilizada é atualmente considerada plausível sob um ponto-de-vista geoquímico, nem os resultados obtidos parecem próximos de elucidar os possíveis passos subseqüentes da história da vida.
17

O papel das argilas 

Retomando as idéias de Bernal, Alexander Graham Cairns-Smith  , desenvolveu a hipótese de que os minerais argilosos teriam constituído não somente o suporte, mas também o próprio sistema genético da vida primitiva, posteriormente suplantado por compostos orgânicos (ácidos nucléicos). Em sua defesa levantou a capacidade de replicação de superfícies cristalinas, preservando defeitos e irregularidades, e também a complexidade química dos polímeros envolvidos nos processos reprodutivos atuais.

Modelos Hidrotermais. 


Fumarolas negras. Nas últimas três décadas, a atividade das fendas hidrotermais submarinas tem sido alvo de investigações no sentido de avaliar o seu possível papel no surgimento da vida.
A descoberta, em 1979, da Fossa das Galápagos (Corliss, Baross, Hoffman), um rico ecossistema alimentado por compostos provenientes da atividade hidrotermal e portanto, independente dos processos fotossintéticos, serviu de base à hipótese de uma origem quimiossintética autotrófica para a vida. Dentre as muitas variantes desta proposta, a mais detalhada é aquela que foi elaborada por Günter Wächtershäuser , postulando uma fase primitiva do metabolismo em que os processos bioquímicos seriam estruturados de forma bidimensional, sobre as superfícies da pirita (FeS2), um mineral abundante nestes ambientes.
17

Modelos abstratos 

Alguns enfoques acerca da origem da vida utilizam uma abordagem mais abstrata ou genérica. Ao invés de partir da natureza dos constituintes químicos dos sistemas vivos, guiam-se sobretudo por suas propriedades funcionais. Um dos modelos mais conhecidos nesta concepção é o dos hiperciclos, propostos por Manfred Eigen   como protótipos dos ciclos metabólicos primitivos. Outras propostas que fogem às especificidades da postulação de uma bioquímica primitiva são a proposta do "Garbage Bag World" ("Mundo Saco de Lixo"), do físico Freeman Dyson  , endossada por Robert Shapiro   e o modelo de complexidade de Stuart Kauffman  . A primeira propõe que vesículas contendo coleções de compostos químicos formadas ao acaso competissem em viabilidade até que uma delas apresentasse todas as características de um sistema vivo primitivo. Sugere ainda que o metabolismo e a reprodução tivessem surgido independentemente e que os organismos atuais descenderiam de uma célula onde tivesse ocorrido a simbiose dos dois processos. Kauffmann defende, com base em modelos puramente matemáticos, que coleções suficientemente complexas de compostos químicos podem vir a "cristalizar" ciclos metabólicos.
18

Modelos metabólicos - O mundo dos tioésteres 

A ideia de que o funcionamento dos processos metabólicos atuais pode fornecer pistas importantes para a compreensão da bioquímica dos primeiros seres vivos é a base de uma visão "metabólica" da origem da vida, onde se destacam os estudos de Harold Morowitz e Christian de Duve    . Coube a De Duve a formulação de um modelo mais preciso, postulando a congruência entre o metabolismo primitivo e a bioquímica dos seres vivos atuais, onde a função central daAcetil-S-Coenzima A no metabolismo energético teria sido precedida por compostos derivados da esterificação de ácidos carboxílicos (RCOOH) com tióis (RSH), os tioésteres (RCOSR).

O "Mundo do RNA" 

A proposição do "mundo do RNA" feita por Walter Gilbert  em 1986, é baseada na descoberta do fato que estas moléculas são capazes tanto de armazenar informação (como o DNA na maior parte dos organismos vivos atuais), quanto de promover reações metabólicas (como atualmente as enzimas, de natureza protéica). Além das evidências experimentais, que apontam para um rico repertório de atividades catalíticas e para a capacidade de replicação e evolução deste material, há, nos organismos vivos, inúmeros indícios deste "mundo do RNA". Citam-se, entre outros, a natureza química dos co-fatores enzimáticos, estruturalmente relacionados com os monômeros do RNA e os processos de reprodução de vários tipos de vírus, tidos como remanescentes de formas primitivas de vida. A etapa mais recente da origem da vida, tratada pela hipótese do mundo do RNA, é considerada pela maioria dos cientistas a mais bem conhecida, e talvez a única em que se tenha claramente ultrapassado o domínio da especulação.
19

Visões alternativas 

Panspermia 


O cometa Hale Bopp. Os cometas poderiam ter contribuído no aporte de compostos orgânicos à Terra primitiva.
panspermia é a hipótese de que os seres vivos não se originaram em nosso planeta, mas sim em outro ponto do universo, tendo sido transportados pelo espaço cósmico, possivelmente sob forma de esporos. Seus defensores argumentam que o lapso de tempo necessário à evolução da vida seria maior que os 4,5 bilhões de anos desde a formação da Terra, mas não oferecem nenhuma ideia de onde ou como a vida teria realmente surgido. Observe-se, porém, que a possibilidade de compostos orgânicos simples formados em cometas ou em outros pontos do espaço é aceita por muitos defensores do modelo clássico para a origem da vida.

Ecopoese 

O modelo da Ecopoese    postula que os ciclos geoquímicos dos elementos biogênicos, dirigidos por uma atmosfera primordial rica em oxigênio, foram a base de um metabolismo planetário que precedeu e condicionou a evolução gradual da vida organismal. Esta visão contraria a idéia tradicional de que a ação dos organismos é a grande responsável pelas características principais do ambiente terrestre. É também consistente com as crescentes evidências de uma atmosfera oxidante  desde o início da formação de nosso planeta e com a antiguidade do metabolismo aeróbico, comparado à fotossíntese oxigênica 
20